Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Shanghai Jiaotong University(Medical Science) ; (12): 578-585, 2019.
Article in Chinese | WPRIM | ID: wpr-843414

ABSTRACT

Objective • To investigate the effect of anemarrhena saponin (ZMS) on mRNA level of brain-derived neurotrophic factor (BDNF) and relevant mechanism in oxidative stress damage of SH-SY5Y cells. Methods • SH-SY5Y cells treated with H2O2 were chosen as cell models of oxidative stress. Cell viability was determined using cell counting kit-8 (CCK-8). The mRNA levels of BDNF and its important transcripts were detected by quantitative real-time PCR (qPCR). The histone deacetylases (HDACs) activity fluorescence quantification assay kit was used to measure the effect of ZMS on HDACs activity. Western blotting was used to detect the protein expression levels of acetylated histone H3, acetylated histone H4, specific acetylation site-related proteins, and HDAC1/2/3. Results • qPCR showed that ZMS could increase the mRNA levels of BDNF and its transcript in the cell models. Western blotting showed that ZMS pretreatment could increase the protein levels of acetylated histone H3, acetylated histone H4 and acetylated histone H3K14, and there was no significant effect on protein levels of HDAC1/2/3. In addition, HDACs activity fluorescence quantification assay kit showed that ZMS could inhibit HDACs activity significantly. Conclusion • ZMS can increase the mRNA levels of BDNF and its transcript in oxidative stress damage cell models, which may be related to the regulation of histone acetylation level

2.
Acta Pharmaceutica Sinica ; (12): 563-2016.
Article in Chinese | WPRIM | ID: wpr-779205

ABSTRACT

This study was designed to identify inducers of ATP-binding cassette transporter A1(ABCA1) and CD36 and lysosomal integral membrane protein-II analogous-1(CLA-1) and to evaluate the in vitro effect of the active compound on lipid metabolism. Among 20000 compounds screened, E23869 was found as a positive hit using cell-based high throughput screening models. The up-regulating activities of E23869 in ABCA1p-LUC and CLA-1p-LUC HepG2 cells were 196% and 198%, respectively. The EC50 values of E23869 in ABCA1p-LUC and CLA-1p-LUC HepG2 cells were 0.25 μmol·L-1 and 0.66 μmol·L-1, respectively. E23869 significantly upregulated the protein levels of ABCA1, scavenger receptor class B type I (SR-BI)/CLA-1 and ATP-binding cassette transporter G1(ABCG1) in both macrophages RAW264.7 and L02 cells by Western blotting analysis. Foam cell assay showed that E23869 inhibited lipids accumulations in macrophages RAW264.7. Cholesterol efflux assay showed that E23869 induced HDL-mediated cholesterol efflux in macrophages RAW264.7. Moreover, E23869 up-regulated ABCA1, SR-BI/CLA-1 and ABCG1 expressions through activation of PPARα and PPARγ. In addition, E23869 weakly promoted in vitro differentiation of mouse preadipocytes 3T3-L1. In conclusion, E23869 up-regulated ABCA1, SR-BI/CLA-1 and ABCG1 expressions to promote cholesterol efflux, which is a good leading compound for regulation of lipid metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL